Package: gsaot 0.1.0
gsaot: Compute Global Sensitivity Analysis Indices Using Optimal Transport
Computing Global Sensitivity Indices from given data using Optimal Transport, as defined in Borgonovo et al (2024) <doi:10.1287/mnsc.2023.01796>. You provide an input sample, an output sample, decide the algorithm, and compute the indices.
Authors:
gsaot_0.1.0.tar.gz
gsaot_0.1.0.zip(r-4.5)gsaot_0.1.0.zip(r-4.4)gsaot_0.1.0.zip(r-4.3)
gsaot_0.1.0.tgz(r-4.4-x86_64)gsaot_0.1.0.tgz(r-4.4-arm64)gsaot_0.1.0.tgz(r-4.3-x86_64)gsaot_0.1.0.tgz(r-4.3-arm64)
gsaot_0.1.0.tar.gz(r-4.5-noble)gsaot_0.1.0.tar.gz(r-4.4-noble)
gsaot_0.1.0.tgz(r-4.4-emscripten)gsaot_0.1.0.tgz(r-4.3-emscripten)
gsaot.pdf |gsaot.html✨
gsaot/json (API)
NEWS
# Install 'gsaot' in R: |
install.packages('gsaot', repos = c('https://pietrocipolla.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/pietrocipolla/gsaot/issues
Pkgdown site:https://pietrocipolla.github.io
Last updated 22 days agofrom:227b3b3a55. Checks:9 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 11 2025 |
R-4.5-win-x86_64 | OK | Jan 11 2025 |
R-4.5-linux-x86_64 | OK | Jan 11 2025 |
R-4.4-win-x86_64 | OK | Jan 11 2025 |
R-4.4-mac-x86_64 | OK | Jan 11 2025 |
R-4.4-mac-aarch64 | OK | Jan 11 2025 |
R-4.3-win-x86_64 | OK | Jan 11 2025 |
R-4.3-mac-x86_64 | OK | Jan 11 2025 |
R-4.3-mac-aarch64 | OK | Jan 11 2025 |
Exports:lower_boundot_indicesot_indices_1dot_indices_smapot_indices_wbplot_inner_stats
Dependencies:bootclicolorspacedata.tablefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepatchworkpillarpkgconfigR6rbibutilsRColorBrewerRcppRcppEigenRdpackrlangscalestibbletransportutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Calculate lower bounds for Optimal Transport sensitivity indices | lower_bound |
Calculate Optimal Transport sensitivity indices for multivariate y | ot_indices |
Evaluate Optimal Transport indices on one dimensional outputs | ot_indices_1d |
Evaluate sensitivity maps using Optimal Transport indices | ot_indices_smap |
Evaluate Wasserstein-Bures approximation of the Optimal Transport solution | ot_indices_wb |
Plot Optimal Transport inner statistics | plot_inner_stats |
Plot Optimal Transport sensitivity indices | plot.gsaot_indices |
Print Optimal Transport Sensitivity indices information | print.gsaot_indices |